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I. Summary

The goal of the work reported herein is to develop and validate computational tools

to be used for the design of planar and non-planar wing geometries for minumum induced

drag. Because of the iterative nature of the design problem, it is important that, in addi-

tion to being sufficiently accurate for the problem at hand, they are reasonably fast and

computationally efficient. Toward this end, a method of predicting induced drag in the

presence of a non-rigid wake has been coupled with a panel method. The induced drag

prediction technique is based on the Kutta-Joukowski law applied at the trailing edge.

Until recently, the use of this method has not been fully explored and pressure integration

and Trefftz-plane calculations favored. As is shown in this report, however, the Kutta-

Joukowski method is able to give better results for a given amount of effort than the more

common techniques, particularly when relaxed wakes and non-planar wing geometries are

considered. Using these tools, a workable design method is in place which takes into ac-

count relaxed wakes and non-planar wing geometries. It is recommended that this method

be used to design a wind-tunnel experiment to verify the predicted aerodynamic benefits

of non-planar wing geometries.



II. Introduction

Improvement in the aerodynamic efficiency of commercial transport aircraft will re-

duce fuel usage with subsequent reduction in both monetary and environmental costs. To

this end, the current research is aimed at reducing the overall drag of these aircraft with

specific emphasis on reducing the drag generated by the lifting surfaces. The ultimate goal

of this program is to create a wing design methodology which will optimize the geometry

of the wing for lowest total drag within the contraints of a particular design specification.

The components of drag which must be considered include profile drag, induced drag, and

wave drag. The optimization problem is that of assessing the various parameters which

contribute to the different components of wing drag, and determining the wing geometry

which will generate the best overall performance for a given aircraft mission.

The primary thrust of the research effort to date has concentrated on the prediction

and minimization of induced drag. Recently reported findings have indicated that in-

duced drag may be reduced by utilizing unconventionally shaped and/or non-planar wing

planforms 1-3. To investigate these findings, it is necessary to be able to predict induced

drag with reliability and precision. Furthermore, if the same method is to be used for

design purposes then, because of the iterative nature of the design process, it is also nec-

essary that the method be computationally efficient. Toward this end, an analysis method

has been developed which has the accuracy of a higher-order pane] method using a large

panel density while requiring only 2 percent of the computation time. The technique is

capable of accounting for the effects of a free wake in the prediction of the induced drag

for both planar and non-planar wings.

At this point, the newly developed method for predicting induced drag has been val-

idated by comparing its predictions with those of other commonly used analysis schemes.

It has also been used to match the experimental results of a recent wind-tunnel test di-

rected at exploring the influence of planform geometry on induced drag. In both exercises,

the new method performed very well. Currently, it is being used to study the trade-off



between induced drag and profile darg in the design of non-planar wings in which the

total drag is minimized. If these studies indicate that significant aerodynamic gains are

possible through the use of non-planar wing geometries, then this induced-drag analysis

method should be extremely useful to the overall design problem considering such things

as structural weight, total span, wing-root bending moment, and so forth. It is only at

this point that wing geometries having reduced induced drag can be used to advantage in

the design of more efficient aircraft.



III. Background Discussion

To calculate the induced drag generated by a lifting surface it is required that all, or at

least part, of the velocity field be determined in the vicinity of the wing. Linear potential

flow methods generally solve for the velocity over only a small part of the flow field and

thus save a tremendous amount of computation time. The induced drag is calculated in

these methods by either applying the Kutta-Joukowski law to the bound vorticity, or by

integrating the streamwise component of pressure on the surface of the wing. In this way

potential flow methods require solution of the velocity field only at points defining the

idealized lifting surface as opposed to points defining the entire flow field. The potential

flow methods which employ the Kutta-Joukowski law determine the downwash velocity

at the wing either by direct calcuation or by analyzing the flow in the far-wake where

the flow is assumed to be two-dimensional (i.e., in the Trefftz plane), and relating that

solution to the flow at the wing. The latter technique assumes the wake of the wing

to be rigid and aligned with the free-stream velocity. A more computationally intensive

approach for calculating the induced drag is to solve the governing equations over the entire

"region of influence" in the flow field. The induced drag is then determined by integrating

the resulting distributed pressure force on the wing surface, or directly from the calculated

vorticity shed into the wake. The amount of computer time required to solve the governing

equations makes this approach impractical as a tool for preliminary design.

The following is a brief explanation of available methods for calculating induced drag

and a discussion of the strengths and weaknesses of the potential flow methods, as well as

methods which numerically solve the Euler or Navier-Stokes equations.

Lifting-Line Theory (Prandtl-Lanchester)

The lifting-line theory of Prandtl analyzes the flow field as a potential field with the

wing modeled as a singularity in the form of a line vortex of varying strength located at

the wing quarter-chord point 4. Helmholtz's theorem requires that the spanwise change in
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vorticity of the lifting line be shedinto a sheetof distributed trailing vorticity. The trailing

vorticity is assumedto be aligned with the free-streamvelocity and to extend downstream

to infinity. The strength of the trailing vortex sheetat any point is equal to the spanwlse

change in vortex strength at the corresponding point on the lifting line. In this model,

the sheet of trailing vorticity is assumedto be rigid and does not deform under its own

induced velocity. The velocity that the trailing vortex sheet induces on the lifting line is

usedto calculate the induced drag of the wing.

Munk made useof the lifting-fine theory to calculate the optimum spanwisellft dis-

tribution for minimum induced drag within the context of the given assumptions_. In this

case,the minimum induced drag is achievedwhen the induced velocity normal to the lift-

ing line is proportional to the cosineof the local dihedral angle. For a straight lifting line

(dihedral angleequal to zeroeverywherealong the span) the lift distribution that generates

this induced velocity distribution is elliptical. For a curvedlifting line, which models anon-

planar wing with spanwisevarying dihedraI angle, the optimum lift distribution for min-

imum induced drag is well defined, again, within the limits of the modeling assumptions° .

Several questions arise, however, regarding the assumptions used in obtaining these results.

In particular, the lifting-line model ignores the effect of the chordwise distribution of vor-

ticity on the downwash distribution since it collapses all the vorticity generated at a given

spanwise location to a single point. Also, the effect that the deforming wake might have

on wing performance is neglected. While lifting-line theory is useful for approximating the

performance of unswept large-aspect-ratio wings, once the chord distribution is fixed, the

method is unable to account for any differences between wings due to planform shape.

Modified Lifting-Line Theory (Eppler)

A recent modification to lifting-line theory locates the lifting line at the trailing edge of

the planform instead of along the quarter-chord line r. As in the Prandtl lifting-line model,

the effects of chordwise loading are not included; however, the influence of the trailing-edge

shape is now taken into account. It is assumed in this method that the bound vorticity does
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not influence the induced velocity in either the wake or at the lifting line and is therefi,re

not considered in any downwash calculations. Induced drag is calculated in this method by

applying the Kutta-Joukowski law to the bound vorticity at the trailing edge. The Eppler

method can be implemented with either fixed- or free-wake analysis, and can consider

planar and non-planar wing planforms. The advantage of the method is that it possesses

the simplicity of the Prandtl lifting-line model, but includes some planform effects in the

form of the trailing-edge shape. Intuitively, the Eppler model makes sense in that it places

tile bound vortex line at the location where the vorticity is actually shed into the flow.

Vortex-Lattice Methods

The vortex-lattice method s uses an array of horseshoe vortices with spanwise segments

bound to the wing and streamwise segments trailing downstream from the trailing edge

parallel to the free-stream velocity. The strength of each vortex is determined by satisfying

the condition that the flow be tangent to the mean camber line of the wing at a number

of control points equal to the number of vortices used. This constraint defines a system

of simultaneous linear equations which are solved for the vortex strengths. The strengths

of the streamwise trailing vortex filaments are taken as the sum of the strengths of the

horseshoe vortices distributed over the chord at a given spanwise position.

Modeling the wing as a lattice of vortices attempts to capture the effect of the chord-

wise loading on the overalI wing aerodynamics. The vortex-lattice method does not capture

any thickness effects in that it models the wing as a set of discrete line vortices located on

the mean camber line. The traditional vortex-lattice method also does not account for the

influence of the free wake. Typically the wing wake is modeled as straight, non-deforming

vortex filaments aligned with the free stream; however, the effect of the deforming wake

can be included in this method using wake relaxation 9.

Induced drag is normally calculated in the vortex-lattice method by applying the

Kutta-Joukowski law on the spanwise bound vortex segments under the influence of the

local downwash. Consequently, the orientation of the bound vortices is important and



someresearchhas been done regarding the way in which the lattice is constructed1a-1_

One question which arises is whether the spanwisevortex segments should be aligned

perpendicular to the free-stream velocity, aligned with the sweepangle of the wing, or

aligned in someother direction depending on the wing planform shape. Unfortunately,

it is found that the choiceof lattice shape can have a significant effect on the solutions

obtained with this formulation.

Linear Panel Methods

Panel methods discretize the wing upper and lower surfacesinto source,doublet, or

vortex panels which induce a perturbation on the uniform (free-stream) velocity fieldTM.

Unlike vortex-lattice methods, such methods take the effects of wing thickness into account.

Low-order panel methods assume the panels to be fiat and have constant source, doublet,

or vortex strength over the entire panel 15, while higher-order methods consider surface

curvature and source, doublet, or vortex strength derivative effects. The strength of each

panel is determined by satisfying the flow tangency condition at a number of control points

equal to the number of panels used. As in the vortex-lattice method, the application of

the appropriate boundary conditions produces a system of linear simultaneous equations

that can be solved for the panel strengths. The shape of the freely deforming wake can

also be computed by discretizing the wake into panels and calculating the flow velocity

at each panel. The wake is then reoriented so that each panel is aligned with the local

velocity vector. Since the strength and orientation of the panels in the wake effect those

on the wing, this process must be iterated until it converges to a steady-state wake shape.

For panel methods, induced drag can be calculated by taking the streamwise compo-

nent of the product of surface pressure and panel area summed over all the wing panels.

This method is extremely sensitive to errors in the calculated pressure distribution which

are most pronounced near the leading edges and wing tips, even in higher-order methods 3.

Another means of calculating induced drag is to either assume a rigid wake, or attempt to

compute the deformed wake shape, then numerically integrate over the velocity field far
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downstream where the flow is assumedto be two-dimensional. In the relaxed-wake case,

this is extremely difficult in that it is as yet not possible to resolve velocities well enough

in the cores of the rolled-up trailing vortex sheet to accurately predict the induced drag.

Full-Potential, Euler and Navier-Stokes Methods

Linearized potential flow methods do not include the effects of compressibility and are

therefore inadequate for the transonic wing design problem. To handle these effects in cal-

culating induced drag, a numerical solution of at least the full potential or Euler equations

is required. The solution must be found over a large enough region of the flow so as to cap-

ture the significant upstream and downstream effects on the wing performance. As in the

linearized case, the full-potential equations require that the wake geometry be specified,

or fitted, as a boundary condition before solution takes place 1G. In the case of the Euler

equations, the freely deforming wake shape is captured in the solution. Once the velocity

distribution on the wing is determined, the lift and induced drag on the wing can be found

from a surface pressure integration similar to that used in panel methods. Determining

lift and drag from a far-field wake-integration scheme has also been attempted 17

It should be noted that even though the Euter equations do not contain any viscosity

terms, the numerical solution shows some viscous-like behavior because of the truncation

error incurred in the finite-differencing process. By decreasing the gradients in the solution,

this artificial viscosity will drive the mathematical solution in the same direction, but not

necessarily to the same extent, as the real viscous effects. Consequently, the far-field wake-

integration methods for determinimg induced drag may be subject to errors brought on

by a non-physical wake shape.

In order to numerically solve the Euler equations for a simple wing geometry over

the number of grid points needed for reasonable accuracy, approximately 3 hours of com-

putation time on a Cray Y-MP is required 17. It is expected that the solution to the

full-potential equation would require a similar effort is. This amount of computation time

would be generally considered excessive for use in an iterative design process.



To include both the effects of viscosity and compressibility in the wing design prob-

lem, either a boundary layer solution or the full Navier-Stokes equations must be used.

Numerically solving the Navier-Stokes equations requires an amount of computation time

greater than that required for solving the Euler equations. Thus, this approach is also

impractical for routine design activity.

A Note on Calculating the Deformed Wake Shape

Due to the mathematical instabilty inherent in the self-induced motion of a vortex

sheet, accurate determination of the shape of a freely deforming wake in any potential flow

technique is an extremely difficult problem. The wake relaxation method calculates the lo-

cal velocity at points in the wake, aligns the trailing vortex filaments with the local velocity

(streamlines), then iterates until convergence to a steady state wake shape is achieved °. A

time-stepping method used in conjunction with some vortex-lattice 19 and panel 2'' methods

convects the shed vortex filaments with the instantaneous local velocity. This method is

suited for unsteady flow problems whereas the wake-relaxation method assumes steady-

state conditions exists. Still another scheme treats the wake as an array of two-dlmensional

point vortices moving in planes perpendicular to the free-stream velocity _1 . Precise analysis

of deforming vortex sheets has been attempted recently and it has been noted that even for

a simple two-dimensional vortex sheet problem "the calculation of the self-induced motion

of vortex sheets has proved quite intractable and has resisted the best efforts of numerous

investigators. ''2z Based on these findings, it should be noted that the calculated shape of

the deformed wake, regardless of the method used, may vary significantly from reality. If

the influence of the wake shape on the induced drag is not significant, however, then the

difference between the shape of the actual wake and that modeled is not critical to the

design of optimum wing geometries. This issue will be addressed in the following sections.

9



IV. The Development of a Method for the Aerodynamic Design and

Analysis of Planar and Non-Planar Wings

After considering all of the methods described, it was concluded that none had the

speed and accuracy required to be effective as a tool for designing wings having minimum

induced drag. Thus, a hybrid method was created to capture the best features of several

of the methods. The hybrid method combines the lift distribution and wake relaxation

of a low-order panel method with the induced drag calculation of the modified lifting-

line method. In addition, the panel method solution is iterated, to take into account the

changing influence of the deforming wake. Furthermore, the method is reasonably fast and

retains sufficient accuracy to be useful for design work.

Panel Method Solution

The first element of the hybrid method is a low-order panel method which models

the wing with flat panels each having a constant distributed source and doublet strength.

The maximum number of panels that the code can handle is limited only by the available

machine memory. A wake relaxation scheme is used with the vorticity shed from a given

point on the trailing edge taken as the difference in doublet strengths of the tapper and

lower surface panels which join to form the trailing edge at that point.

The strengths of the wing panels are first solved using a fixed wake aligned with the

free-stream velocity vector. Given this distribution of sources and doublets on the wing,

with trailing wake vortex filaments of corresponding strength, the wake is then relaxed to

align itself with the local velocity vectors (streamlines) generated by the source, doublet,

and vortex distribution. This wake relaxation is an iterative process and usually converges

within three iterations.

Once the wake shape is determined, the induced drag is calculated by means of a

method to be described shortly. Using the deformed wake shape, which now has an influ-

ence on the wing different from that of the previously assumed flat, fixed wake, the panel
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method is resolved, generating a new distribution of source and doublet strengths over the

wing. With the new source, doublet, and corresponding vortex filaments strengths, the

wake is further relaxed to a new shape, the induced drag recalculated, and the process

continued until convergence, based on the induced drag calculation, is achieved.

Induced Drag Calculation

The induced drag is calculated in the hybrid method by application of the Kutta-

Joukowski law

at the trailing edge of the wing. The velocity in this equation is the velocity normal to the

free-stream velocity induced by the wake vortex filaments, excluding the influence of the

wing source and doublet distribution. This is an extension of the assertion by Munk z that

the bound vorticity need not be included in the calculation of induced downwash because

the influence from the transverse vortices of any two "lifting elements" is reciprocal and

cancelling. Although Munk's formulation was developed assuming a fixed wake, the influ-

ence of the bound vorticity is uneffected by what is happening downstream, and therefore

this assertion should be equally valid whether the wake is fixed or free to deform. The wake

shape used in this induced drag calculation is, of course, that found from the preceeding

panel method solution. After the induced drag is calculated, the panel method is resolved

and, using the new wake shape, the induced drag recalculated. This process is continued

until convergence is achieved based on the change in the calculated induced drag from one

iteration to the next.

Extrapolation Factor

An important element of the present method is an extrapolation factor which all but

eliminates the dependence of the computed induced drag on the spanwise number of panels

used in modeling the wing. This factor is a function of the number of spanwise panels and
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is calculated by comparing the induced drag computed using the li_ng-line part of lhe

hybrid method with a fixed wake to that computed analytically for an elliptlcally loaded

wing. Specifically, the extrapolation factor is found by applying the Kutta-Joukowski law

at the trailing edgeof an elliptically loaded wing using the velocity induced by a flat,

fixed wakemodeledwith a given number of trailing vortex filaments. The strengths of the

trailing filaments are equal to the spanwisederivative of the bound vorticity. As the span

et_ciencyfor this caseis known analytically to be unity, the span et_ciency computed by

the above method can be usedas an extrapolation factor for any results computed using

the samenumber of spanwiseincrements. It will be shown that the effect of the extrapo-

lation factor is to dramatically reducethe number of wing panelsneededfor accurate drag

determination. This results in a significant reduction in required computation time.

12



V. Validation Using Computed Results

The hybrid panel/trailing-edge method has been validated by testing its robustness,

evaluating its self-consistency, and comparing results obtained using it to those from other

computational methods.

The span efficiency factor, e, was calculated using several methods for wings with

varying amounts of sweep. The wing geometries used all have elliptical chord distributions

and use an NACA 0012 airfoil. The location of the trailing edge of the wing geometries is

defined by the equation

Xt.e = Croot _)(1 -- v/X -- 77 2) -{-
Croot

where 77is the non-dimensional span location, and the tip location (Xtip) relative to the root

chord varies from 0.25Cro,,, to 1.50Croot. The aspect ratio of the geometries analyzed is 7.00.

Although the hybrid code can analyze models with both twist and dihedral, neither was

included in the validation test runs. The test geometries which have relative tip locations

from 0.25 (unswept elliptical) to 1.50 (full crescent) are shown in Fig. 1.

Extrapolation Factor

The extrapolation factor discussed in the previous section is presented as a function

of the number of spanwise increments in Fig. 2. Fig. 3 shows the effect of using the

extrapolation factor on the calculated value of the span efficiency factor, e. With no

extrapolation factor included, e varies significantly as a function of the spanwise panel

density as shown by the uncorrected curves. For spanwise panel numbers greater than 20,

e becomes essentially independent of panel number when use is made of the extrapolation

factor. This result will be further demonstrated by comparison to a higher order panel

method in the following sections.

With respect to the number of chordwise panels necessary for accurate induced drag

calculations, as demonstrated in Fig. 4, the value of e is seen to be relatively insensitive
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to the number of chordwise panels provided at least 50 panels (25 upper surface, 25 lower

surface) are used.

Other Computational Methods

The results from the hybrid panel/trailing-edge method have been compared to those
a

from several other drag prediction methods. A brief description of these methods follows.

Pressure Integration

The most direct way to predict induced drag using a panel method is by summing the

streamwise component of the predicted surface pressure force over all of the wing panels.

Since the mathematical model used in a panel method does not account for viscous effects,

the streamwise force thus computed is the induced drag. It has been shown :'_ that the

induced drag calculated in this way is extremely sensitive to the panel density in both

the spanwise and chordwise directions. This is the major shortcoming of this prediction

method in that to obtain reasonably consistent results, a large number of surface pan-

els must be used and the required computation time becomes prohibitive, especially for

design purposes.

Another source of error in the pressure integration method is demonstrated when it

is applied to the zero lift case. Specifically, it is found that the method yields a non-

zero induced drag force when the test wings are analyzed at zero angle of attack. Since

the wings are untwisted and the airfoil symmetric, this is clearly a numerical error and,

although small, must be taken into account. Fig. 5 shows the dependence of this error on

panel density for the low-order panel method used in the present study, and compares this

to a similar error obtained using a higher-order method and presented in Ref. 3. The error

in the zero-lift drag prediction appears to be dependent on sweep, however, increasing

the number of spanwise panels causes this dependence to disappear. This behavior is

corroborated by the results of Ref. 3. With 100 chordwise by 10 spanwise (100x10) panels,

the error with increasing sweep is very similar to that of the hybrid method. As the panel
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density is increasedto 100x50,however,the error is essentiallyindependent of tile sweep.

Thus, for a given numberof chordwisepanels,increasingthe spanwisepanel density causes

the zero-lift error to approach that of the zero-sweepcase. Consequently, a correction

basedon the zero-sweeperror for a given chordwisedensity canbe applied to the pressure

integration drag computations. In the test casesthat follow, the pressure integration

results are presentedboth with and without the zero-lift error accounted for. These two

extremesare presentedas an upper and lower bound on the pressureintegration results.

Finally, it should be noted that the pressureintegration results presenteddo include

aneffect from the deformingwake. This comesabout in the computation of the pressureon

the wing surfaceby including the contribution of velocity induced by the deformed wake.

Trefftz Plane Method

Following the formulation by Trefftz 23, the induced drag was computed assuming the

wake to be fixed and aligned with the free-stream velocity. The Trefftz method used here

differs from the hybrid panel/trailing-edge method only in that the wake is undeformed.

In the following comparisons, the difference in results between the hybrid method and the

Trefftz method can be taken to be the influence of the freely deforming wake.

Modified LiKing Line

The last method used for comparison uses the modified lifting-line calculation of in-

duced drag;. This method takes the spanwise circulation distribution predicted by the

low-order panel method, computes the corresponding strength of the trailing streamwise

vortex filaments shed into the wake, then relaxes the wake using only the influence of the

trailing wake vortices. The induced drag is then computed applying the Kutta-Joukowskl

law at the wing trailing edge using the velocity induced by the deformed wake and the wing

circulation assumed to be concentrated at the trailing edge. Unlike the hybrid method the

modified lifting-line method does not include any influence from the wing in calculating

the shape of the deformed wake.
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Comparison of Results

Figs. 6 and 7 present the span efficiency factor, e, predicted by the hybrid panel/trail-

ing-edge method, pressure integration, Trefftz method, and modified llfting-llne method,

as a function of the wing tip location (wing sweep). The methods all use a panelling grid

with 50 chordwise (25 upper, 25 lower) and 20 spanwise (half-span) panels. Results for an

angle of attack of 4 degrees are given in Fig. 6, and results for 8 degrees in Fig. 7.

The hybrid panel/trailing-edge method shows the most consistency between the 4 and

8 degree angle of attack cases; the other methods show a reversal in their predicted trends.

Although it is expected that e will change slightly with angle of attack, the radical trend

changes predicted by the other methods are hard to substantiate. The consistency of the

hybrid method suggests that it is less prone to error at higher angles of attack than the

other methods, especially pressure integration, and is therefore more robust. The reduction

in induced drag with aft sweep corresponds to recent experimental results 24 and has been

predicted by others using various methods over the past several years l-a

Drag predictions of the present method are compared with those from a hlgher-order

panel method using pressure integration 3 in Fig. 8. The higher-order panel method re-

quired 100 chordwise and 70 spanwise panels to approach a consistent result. In contrast,

the hybrid panel/trailing-edge method essentially matches those results with only 50x20

panels. If it is assumed that the computation time of the panel methods vary with N z, the

hybrid method will run approximately 50 tirne_ fa_ter than the higher-order panel method

for the same level of accuracy. For this reason, the hybrid panel/trailing-edge method

should be an extemely useful tool for the design of wings having minimum induced drag.
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VI. Validation Using Experimental Results

Description of Test Models

In addition to comparing results to a number of other methods, the hybrid panel/trail-

ing edge method was validated by comparing its predictions against experimental results.

The experimental data used are those obtained during recent wind-tunnel tests at the

NASA Langley Research Center. The wing geometries used for this comparison are similar

to those used in the computational validation of the previous section. Each wing has an

elliptical chord distribution with spanwise varying amounts of wing sweep. The location

of the quarter chord point at each spanwise station is defined by the position of the wing

tip relative to the root chord and is given by the expression

3• = c, (1- 7;

The wings used in the wind-tunnel tests have tip locations at 0.25 (unswept elliptical), 1.50

(crescent shaped), and 1.00 (straight traillng-edge) relative to the root chord. A constant

NLF(1)-0416 airfoil section 2: is used on each model, and the transition point is fixed by

trip strips at 7.5% chord. The wings of the wind-tunnel models are untwisted, have a

span of 48.00 inches, a projected area of 384.0 sq.in., and an aspect ratio of 6.00. Each

of the wings is mounted on a common 3.00 inch diameter centerbody. The influence of

the centerbody is not included in the computational predictions. The geometries of these

wings (without the centerbody) are shown in Fig. 9.

Prediction Method

The hybrid panel/trailing-edge method was used to predict the inviscid (vortex) in-

duced drag. The wings were modeled with 60 chordwise (30 upper, 30 lower) panels and

20 spanwise (half-span) panels. The span efficiency factor was predicted using the same

procedure as described in the previous sections.
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The profile drag of the models was predicted by means of a strip analysis using the

section lift coefficients predicted by the panel method. The section profile drag coefficients

of the NLF(1)-0416 airfoil as a function of chord Reynolds number and section lift coeffi-

cient were obtained using the computer program developed by Eppler and Somers 2G. The

effects of flow separation at the higher lift coefficients are not fully taken into account.

Presentation and Discussion of Results

The results from the wind-tunnel tests and the predictions of the hybrid panel/trailing-

edge method are presented in Figs. 10-21, and in Table 1. Comparisons between the ex-

perimentally measured and the computationally predicted performance for each wing are

presented in Figs. 10-12. The drag is slightly overpredicted at low lift coefficients in all

cases and underpredicted at high lift coefficients for the crescent-shaped wing. The change

in drag with respect to lift is predicted fairly well up to moderate lift coefficients for all of

the wings. Figs. 13 and 14 can be used to compare the performance of the wings relative to

one another as measured experimentally and as predicted by the hybrid method. The pre-

dicted results agree with the measured data in that the straight-trailing-edge wing exhibits

a drag lower than the unswept elliptical wing even to high lift coefficients. The prediction

method does not, however, capture the significant increase in drag for the crescent-shaped

wing at high lift coefficients.

The measured and the predicted drag coefficients are presented in Figs. 15-19 as a

function of C_, from which Oswald's efficiency factors can be determined. The measured

data in Figs. 15-17 show that all three wings have a non-constant Oswald's efficiency for

the range of lift coefficients over which they were tested. In all cases the measured Oswald's

efficiency decreases with increasing lift coefficient. The change is greatest for the crescent-

shaped wing. As expected, the predicted Oswald's efficiencies remain fairly constant over

the entire lift coefficient range. In the case of the unswept elliptical and straight-trailing-

edge wings, the predicted Oswald's efficiency matches the measured efficiency over the Cz

range from approximately 0.7 to 0.9. For the crescent-shaped wing, the predicted and mea-
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sured Oswald'semcienciesmatch for lift coefficientsfrom 0.6 to 0.8. In all cases,the hybrid

method underpredicts the Oswald's efficiency at low CL and overpredicts it at high CL.

In Figs. 18 and 19 it can be seen that the experimental and predicted results agree

in that both show the relative inferiority of the unswept elliptical wing. Based on these

data and the computational results of the following sections (see Fig. 25), this result is

probably due to the variance of the spanwise lift distribution from elliptical. Above a lift

coefficient of 0.7, the experiment shows the crescent-shaped wing to be clearly inferior to

the straight-trailing-edge wing. This is likely due to flow" separation on the highly swept

tips of the crescent-shaped wing. Obviously this viscous effect is not captured in the

prediction method and, in fact, the predicted results actually show the straight-trailing-

edge wing slightly inferior above a lift coefficient of 0.7. This discrepancy results from error

in the predicted profile drag component which is added to the hybrid method's inviscid

induced drag prediction. To illustrate this, the predicted inviscidinduced drag coefficient

is presented as a function of C[ in Fig. 20. It can be seen that the crescent-shaped

and strMght-trailing-edge wings have nearly identical span efficiencies with the unswept

elliptical wing being clearly inferior.

As a means of separating the effects of the viscous and the inviscid drag components

at lift coefficients between 0 and 0.7, Fig. 21 presents a comparison between the measured

(total) drag coefficient and the predicted vortex (inviscld) induced drag coefficient both

as functions of C_;. The predicted curves have been offset by a constant amount to aid in

comparing their slopes to those of the measured data. It can be seen in this figure that for

the unswept elliptical wing the measured Oswald's efficiency matches the predicted span

efficiency over this entire range of lift coefficients. For the other two wings, the drag due to

lift analysis must be separated into moderate and low lift coefficient ranges. In the moder-

ate Ct range (0.4 to 0.7) the measured drag due to lift of the crescent-shaped wing becomes

dominated by the drag increase due to flow separation at the tips. This is illustrated in Fig.

21 by the departure of the measured drag from the linear CD vs. C[ relationship above a llft
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coefficient of 0.5. In the low C/. range (0 to 0.4) the measured data of the straight-trailing-

edge wing has the most pronounced departure from the linear CD vs. C_ relationship. It is

believed that this wing takes advantage of the decreasing section profile drag of the airfoil

as lift is increased from Ct. = 0 to CL = 0.4 without experiencing the determental effects

of wake roll-up as experienced by the unswept elliptical wing, or the tip flow separation

experienced by the crescent-shaped wing. The straight-trailing-edge wing actually attains

a measured Oswald's efficiency greater than unity in the lift coefficient range between 0

and 0.7. The measured and predicted Oswald's efficiencies over the CL range of 0 to 0.7,

and the predicted span efficiency over the entire Cz. range are presented in Table 1.
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VII. Discussion of Design Tools for Planar and Non-Planar

Wings Having Minimum Induced Drag

In order to design wings having minimum induced drag, it is necessary to know the

optimum lift distribution in the presence of the freely deforming wake. Using the lifting-line

model, Munk 5 concluded that for the induced drag of a wing to be a minimum, the induced

downwash at the lifting line must be constant if the wing is planar, or given by the relation

Wl = Wo COS 0

where w,, is a constant and 0 the local dihedral angle, if the wing is non-planar. Although

Munk assumed that the wake was non-deforming, the reasoning leading to the above

conclusion is not dependent upon the mechanism which generates the downwash. In other

words, this conclusion is valid whether the wake is fixed, or free to deform. In determining

the spanwise lift distribution which generates the optimum downwash distribution, the

assumption of the fixed wake does become important. The classical result of the optimum

elliptic lift distribution follows immediately if this assumption is made. The question that

remains, however, is what lift distribution generates the optimum downwash distribution

for minimum induced drag in the presence of a free wake. As there is no mathematical

solution to this question available, a first step in addressing it was taken when, in the course

of this research, it was shown that for a straight lifting line with an elliptic lift distribution

the induced drag is independent of wake rollup. Given this result and in lieu of a complete

mathematical proof, it is assumed that the free wake does not significantly alter Munk's

result concerning the optimal lift distribution for the minimization of induced drag. To test

this assumption the induced drag was calculated using the modified lifting-line method with

an optimal lift distribution prescribed according to Munk's result. The induced drag was

then calculated with the lift distribution slightly perturbed from the prescribed optimum.

In all cases considered, the drag increased. Thus, for the present time, even if the Munk

result is not truely optimal, it is considered to be close enough for engineering purposes.
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The effect of the deforming wake on the spanwise lift distribution of three wings

with elliptic chord distributions can be seen in Figs. 22-24 which present tile error in tile

spanwise lift distribution from the optimum. It can be seen that the deforming wake has

the largest effect on the wing with the tip at 0.25 root chord (straight quarter-chord line).

As the tip is swept aft, the wake deformation has less and less effect on the lift distribution.

This is demonstrated in Fig. 23 for the straight-trailing-edge wing and in Fig. 24 for the

crescent-shaped wing. It is suggested that the aft-swept tip isolates the rolled wake from

the rest of the wing and, consequently, decreases its influence. These results are combined

and presented in Fig. 25 where it can be seen that the straight-trailing-edge wing maintains

the closest to optimal lift distribution, particularly near to the tip. This is probably due to

the moderate tip sweep decreasing the effect of the rolled wake while not exacerbating the

three-dimensional tip flow exhibited by the highly swept tips of the crescent-shaped wing.

It is interesting to note, that even though the lift distribution of the cresent-shaped wing

is farther from elliptical than the straight-trailing-edge wing, the results presented in the

previous sections predict the crescent-shaped wing to have slightly higher span efficiency.

Some part of this effect is likely due to the benefit of moving the wake aft more than offsets

the penalty of the lift distribution not being elliptical. A more significant contribution

to this effect, however, is that because the panel method predicts negative lift at the tip,

application of the Kutta-Joukowski law here results in a small amount of "induced thrust,"

overcoming the deficiency of the non-optimum lift distribution. This effect is very small

and certainly nullified by viscous effects in the real flow. This conclusion is supported by

the previously presented experimental results.

The use of the hybrid panel/trailing-edge method for the design of non-planar wings

for minimum induced drag, is illustrated in Fig. 26. At the top of this figure, the lift

distribution error from optimum is plotted against span for an arbitrary (starting) wing

planform geometry. In this case, the wing under consideration has winglets which are

0.1 semi-span in'height. Based on the error, the chord was adjusted appropriately in the
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locations where it is over or under that needed for the optimum lift distribulion. As shown

in the other two graphs, the lift distributions for the second and third geometry iterations

are closer to optimum. While these iterations are presented only to demonstrate the

potential, it is clear that this process can be continued until convergence to the optimum

span lift distribution is achieved. The same optimization procedure can be applied to any

non-planar geometries with different dihedral distributions or winglet configurations and

their overall performances compared. In this way, the hybrid method provides a valuable

tool for the design of a mission specific, optimum non-planar wings.
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VIII. Conclusions and Recommendations

The newly developedhybrid panel/trailing-edge method is a valuable tool for taking

the non-linear effectsof a freely deforming wake into account in determining the induced

drag of planar and non-planar wing geometries. When compared to other methods, it is

found that it achievesequivalent accuracyin considerablylesscomputation time. Given

its speed and robustness, the hybrid method should prove most useful in the design of

planar and non-planar wings having minimum induced drag.

Using the hybrid panel/trailing-edge method, the influence of planform geometry on

the induced drag of planar wingshasbeenexplored. It is found that the benefit of crescent-

shaped planforms for reducing induced drag that has been noted by others is confirmed;

however,this benefit is not nearly asgreat ashassometimesbeensuggested.For the family

of wings considered,the reduction in induced drag that is possible for a wing operating at

a lift coefficient of 1.0 and having a straight trailing edgeas compared to one having no

sweepis approximately 1%. For any additional sweep,the additional reduction in induced

drag is not significant and certainly not enoughto offset the penalties due to viscouseffects

that accompanythe highly swept crescentplanforms.

In exploring the effectof the freely deforming wakeon the wing lift distribution, it is

found that the free wake hasa significant influence on the lift distribution of the unswept

elliptical wing, but this effect is diminished when the tip is swept aft. Once the tip is

moved back such that the wing has a straight trailing edge, any further sweepseemsto

have little effect on the lift distribution and, consequently,the span efficiency.

While the impact of planform shapeon reducing the induced drag of planar wings is

limited, significantly greater gains appear to be possibleusing non-planar wing configu-

rations. While well-suited non-planar wing design methods have not been available, the

speedand accuracy of the hybrid method make it ideal for this problem. Based on the

few non-planar casesexamined thus far, the method appearsto handle thesecasesas well
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as it does planar ones. By combining the hybrid method for analyzing induced drag with

methods that predict profile drag, wing geometrieswhich have minimum overall drag can

be designed.

At this point, it is recommended that the methods developed be used to design a wind-

tunnel experiment to compare mission specific planar and non-planar wings. As there is no

common basis of comparison otherwise, by designing an optimum planar and an optimum

non-planar wing to the same mission requirements it is possible to determine if the gains

promised by non-planar geometries are, or are not, real. In addition, as quality experimen-

tal data for non-planar wings is non-existent, the results of such an experiment would be

invaluable for the development and calibration of any non-planar wing analysis methods.

Finally, if the results of the recommended experiment support the promise that aero-

dynamic gains are possible using non-planar wing geometries, then it remains to develop a

method that includes the effects of compressibility and allows a designer to trade-off these

gains against other factors such as weight, wing-root bending moment, and so forth.
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Figure 1: Wing Geometries Used for the Computational Validation of the Hybrid Panel/Trailing-Edge
Method from Unswept Elliptical Wing (top) to Full Crescent-Shaped Wing (bottom).
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Figure 9: Wing Geometries Used for the Experimental Validation of the Hybrid Panel/Trailing-Edge Method;
Unswept Elliptical (top), Crescent-Shaped (center), and Straight Trailing-Edge (bottom)
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Figure 18: Comparison of the Measured Oswald's Efficiencies of the NASA LaRC Test Wings
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Figure 19: Comparison of the Predicted Oswald's Efficiencies of the NASA LaRC Test Wings
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Figure 20: Comparison of the Predicted Span Efficiencies of the NASA LaRC Test Wings
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Figure 26: Non-Planar Wing Design Geometry Iterations
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